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Motivation

I Error in dense field, such as satellite images, are correlated in space.

I Model resolutions are increasing. Need to extract finer structure from
observation.

I Observation error covariance matrices are large and block diagonal.

Hypothesis (in this talk):

I The true R matrix is known.

I The observations are only correlated in space.

Questions:

I How to use this information in a 4D-Var?

I What kind of issue could arise? Why?
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Outline

1 Modeling R through a change of variable

2 Experiments with an isotropic noise

3 Convergence issue
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Technical problems regarding R matrix

Algorithm : 4D-Var with B1/2 preconditioning.
Problem : Need to compute R−1(y −Hx) at each iteration.

Constraints:

I R should be invertible,

I the product R−1(y −Hx) should not be too expensive.

For dense field, we can use methods similar to those developed for B
matrix.

Main differences:

I R needs to be inverted,

I the observation space changes with time.
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Representation of spatial correlation in R
through a change of variable

There are different ways to represent spatial correlation ([Fisher 2003],
[Stewart et al. 2013], [Weaver 2014], ...).
In this talk, we use a diagonal matrix after a change of variable (see [Chabot et
al. 2014]).

Suppose yo = y t + ε with ε ∼ N (0,R).
Then Ayo = Ay t + β with β ∼ N (0,ARAT ).

Aim

Choose A such that DA = diag(ARAT ) ' ARAT .

Here A is an orthonormal wavelet transform.
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Spirit of a wavelet transform

Original signal

Approximation

Details

Approx.

Details

Approx.

Details

Approximation Details
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Spirit of a wavelet transform

Original signal

Signal at different scales
Wavelet

coefficients

= =
store

Summary

Use of a ”basis” where each element has some scale, orientation and spatial
localization properties. Write the cost function as:

(y −H(x))TR−1(y −H(x)) = (y −H(x))TATD−1
A A(y −H(x))

Go in wavelet space
Divide by the varianceReturn in pixel space
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Example of covariance matrix : isotropic

and homogeneous case

True Diagonal wavelet modelisation

Orthonormal wavelet transforms do not preserve (in general):

I the variance value (in pixel space),

I the spatial localization,

I the isotropy or the homogeneity of the covariance fields,

but enable to represent (at a cheap cost) some of the error correlations.
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Twin experiment context

Model : Shallow-water ⇒ quantities of interest are (u,v,h)
Observations : an image sequence of passive tracer ⇒ H is modelled by
an advection–diffusion equation.

Algorithm : 4D-Var with B1/2 preconditioning.
B is modeled by diffusion operators [see Weaver and Courtier 2001].
Background : (u0, v0, h0) = (0, 0, hmean)

Aim

Control the velocity field via the assimilation of a noisy passive tracer sequence.
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Results with homogeneous isotropic noise

Observations : yo
ti = yt

ti + εiso
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I Accounting for error correlations leads to a decrease of the residual error.

I There is no convergence issue in this case.
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Outline

1 Modeling R through a change of variable

2 Experiments with an isotropic noise

3 Convergence issue

8 / 14
Adjoint workshop, June 2, 2015 - Vincent Chabot, Maëlle Nodet, Arthur Vidard



Convergence issue : best matrix

representation in a wavelet space

The true covariance matrix is used in the wavelet space

yo
ti = yt

ti + ε with ε = ATD
1/2
A β β ∼ N (0, I)

A noise realization RMSE with respect to the minimization iterations
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Pixels diagonal
Wavelet diagonal

Incorporating the true covariance information leads to some convergence issue.
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Using the multiscale aspect of the Wavelet

transform

What happens when discarding information from small scales?

Full image

Discard 1 scale
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Discarding some information enables to get a better distance notion.
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Using the multiscale aspect of the Wavelet
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Accelerate the convergence rate

Idea

Use only coarsest information at the beginning of the minimization.
Along the minimization process, incorporate more and more information on fine
scale.
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Pixels diagonal
Wavelet diagonal

Wavelet diagonal: scale by scale incorporation

It accelerates the convergence.
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Conclusion and Future work

Conclusion

I It is possible to incorporate spatial error correlations through a change of
variable.

I This can have some positive impact on the assimilation process.

I This can induced some convergence issues.

I It is possible to overcome this by discarding small scale information at the
beginning of the assimilation process.

Future work

I R formulation in a wavelet space without full image.

I Study the impact of temporal correlation.
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Questions ?
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Accelerate the convergence rate

Idea

Use only coarsest information at the beginning of the minimization.
Along the minimization process, incorporate more and more information on fine
scale.
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Wavelet diagonal: scale by scale incorporation
Spectral diagonal

It accelerates the convergence · · · up to a certain point.
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Example : inhomogeneous case

True Daubechies: 6 scales

Coiflet: 6 scales Coiflet: 2 scales
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Issue with the distance
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The order induced by the wavelet distance (which takes into account error
correlations) is not the one expected.
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Issue with the distance : an homogeneous

isotropic case
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Variance value in Wavelet Space

Isotropic case: log10(σ2) Inhomogeneous case: log10(σ2)
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